[Live Lab] Architecting Real-Time GenAI Workflows in Production | Secure Your Spot
From event-driven architectures to real-time analytics and AI, everything you build starts here.
Data streaming moves high-throughput, low-latency data between systems in real-time. Confluent’s CEO, Jay Kreps, co-created Apache Kafka®—the open source standard for data streaming.
Today, thousands of startups and enterprises trust Confluent instead of managing Kafka. Our cloud-native Kafka engine, KORA autoscales GBps+ workloads 10x faster with 10x lower tail latencies––and a 99.99% SLA.
With data streaming, you don’t operate brittle point-to-point pipelines. Instead, every event—like a click, transaction, sensor reading, or database update—is written to a shared append-only log.
Confluent streams data for any use case:
Optimize your resources at the lowest cost, with pay-as-you-go pricing
Automatically syncs data across global architectures within your private network
Includes RBAC, encryption in transit and at rest, and BYOK
Include SOC 2 Type II, PCI DSS Level 1, HIPAA, and FedRAMP Moderate
Any number of data producers can write events to a shared log, and any number of consumers can read those events independently and in parallel. You can add, evolve, recover, and scale producers or consumers—without dependencies.
Confluent integrates your legacy and modern systems:
Deploy a sample client app in minutes using your preferred language
Avoid 3-6 engineering months of designing, building, and testing each connector
Launch in minutes without operational overhead, reducing your total cost of ownership
Build your own integrations and let us manage the Connect infrastructure
Once events are in the stream, they’re organized into logical topics like "orders" or "payments”. Applications, analytics, and AI all access these topics as a shared source of record.
Confluent enriches your data as it’s created—not after its batched:
Filters, transforms, and joins each event in real-time using SQL
Enforce schema and semantic validation before bad data enters the system
Organizes topics for self-service enrichment and access through a UI or APIs
Represents topics in open table formats such as Apache Iceberg® and Delta Lake
« Confluent nous offre une plateforme de streaming de données complète avec les fonctionnalités professionnelles dont nous avons besoin pour soutenir nos cas d'usage essentiels. Au cours des deux dernières années, nous estimons que cette plateforme nous a permis de gagner huit à neuf mois sur le délai de déploiement d’Apache Kafka. »
« Confluent nous a aidés à mettre en place des clusters Kafka et à rendre nos prototypes exploitables très rapidement. Ce genre de tâches nous aurait pris beaucoup de temps avec la version open source de Kafka. Mais, avec Confluent, tout s'est fait très vite. »
« Confluent Cloud nous a permis de tenir des délais de lancement serrés malgré des ressources limitées. Grâce au service géré de streaming événementiel, nous n’avons pas eu besoin d’embaucher de nouveaux collaborateurs pour assurer la maintenance de nos clusters, et nous pouvons compter sur une disponibilité 24 h/24 et 7 j/7. »
« Confluent est devenu une solution clé pour ceux qui souhaitent tirer parti de la puissance de Kafka pour améliorer leur transparence opérationnelle et prendre des décisions éclairées basées sur les données. Nous sommes ravis des changements que nous avons constatés : Confluent nous a permis d'améliorer les flux de travail, d'accélérer le processus d'approbation des prêts et d'optimiser la qualité et la rapidité de la détection de la fraude. »
« Nous étions à la recherche d'une solution qui nous permettrait de nous décharger de la gestion de Kafka tout en continuant à bénéficier de tous ses avantages. Nous avons trouvé notre bonheur avec Confluent. »
« Même si nous sommes adeptes de l'open source, nous ne sommes pas une start-up. En tant qu'institution financière d'envergure qui collabore avec des entreprises réputées, nous avons besoin de services à la fois utiles et fiables. Avec Confluent, nous ne craignons pas les pannes. Leur plateforme est devenue un système central pour notre entreprise. »
« Les difficultés de mise à l'échelle freinaient notre croissance. Mais, grâce à Confluent, nous avons pu réorganiser facilement notre architecture afin d'exploiter la puissance des données en temps réel et de créer des expériences plus fluides et de meilleure qualité pour tous. »
Confluent can be deployed across multi-cloud, hybrid, edge, and on-premises environments at a cost less than open-source Kafka and your favorite hyperscaler.
Prenez une longueur d'avance sur vos cas d'usage de Kafka et Flink. Créez et activez dès aujourd'hui votre compte Confluent Cloud avec 400 $ de crédits gratuits à utiliser pendant vos 30 premiers jours.
Data streaming is the practice of processing data as a continuous, real-time flow of events, rather than in static batches, and Apache Kafka® is the open source, de facto standard for data streaming
Both Confluent Cloud and Confluent Platform are powered by enterprise distributed Kafka rearchitected for cloud-native scalability that is faster, most cost-efficient, and more resilient. Confluent Cloud specifically is powered by Kora, a cloud-native Kafka engine that allows us to pass on significant savings to our customers—including up to 20-90%+ throughput savings with our autoscaling Standard, Enterprise, and Freight clusters.
Using Confluent for data streaming is a solid choice for any organization that wants to modernize its data architecture, build event-driven applications, leverage real-time data for analytics and AI, and solve data integrity challenges that come with traditional, batch-based ETL.
Traditional APIs typically use a request-response model, where a client requests data from a server. Data streaming uses a publish-subscribe model, where producers publish events to a shared log, and any number of consumers can access those events independently. This decoupling is fundamental to modern, scalable architectures.
A wide range of applications benefit, including applications for streaming analytics, event-driven generative AI, and multi-agent systems. Any application that needs to react to events instantly or needs highly trustworthy data for mission-critical use cases like from fraud detection and cybersecurity can benefit from leveraging cloud-native data streaming on Confluent.
Confluent supports industry-standard data formats like Avro, Protobuf, and JSON Schema through Schema Registry, part of Stream Quality in Stream Governance (Confluent’s fully managed governance suite). This allows users to integrate with hundreds of systems via our portfolio of 120+ pre-built connectors for sources and sinks like databases, data warehouses, and cloud services.
Yes, Confluent is 100% compatible with Apache Kafka®. Tools like Cluster Linking enable you to create reliable, real-time replicas of your existing Kafka data and metadata in Confluent and can also be used to migrate your Kafka workloads without downtime.
Yes. Confluent Cloud's cloud-native Kora engine is designed for massive scale and resilience. It can handle GBps+ workloads, scale 10x faster than traditional Kafka, and is backed by a 99.99% uptime SLA. Confluent Platform also runs on a cloud-native distribution of Kafka and provides features for easier self-managed scaling, including Confluent for Kubernetes and Ansible playbooks. For security, Confluent provides enterprise-grade features and holds numerous compliance certifications including SOC 2, ISO 27001, and PCI DSS across deployment options.
New users receive $400 in credits to start building immediately. Simply sign up, activate your account, and you’ll be walked through how to launch your first cluster, connect a data source, and use Schema Registry on Confluent Cloud. We also recommend exploring our Demo Center and resources on Confluent Developer as you get started.
No. While Confluent offers a fully managed service for Apache Flink® for powerful stream processing, it is not required for the core data streaming capability. You can stream data directly from producers to any number of consumers without using an integrated processing layer.