Développez l'apprentissage automatique prédictif avec Flink | Atelier du 18 déc. | S'inscrire

Confluent at VLDB 2015 | Building a Replicated Logging System with Apache Kafka

Écrit par

There has been much renewed interest in using log-centric architectures to scale distributed systems that provide efficient durability and high availability. In this approach, a collection of distributed servers can operate on a replicated log that record state changes in sequential ordering. The log itself can then be treated as the “source-of-truth”: when some of the servers fail and come back, their states can be deterministically reconstructed by replaying this log upon recovery.

Over the past years of developing and operating Kafka, we have envisioned and exercised the idea of extending its commit-log structured architecture into a replicated logging system in order to serve as the underlying data flow backbone for a wide scope of applications, such as data integration, commit log replication, and stream processing, etc. In this year’s Very Large Data Bases conference I will talk about our experience in building such a replicated logging system using Kafka and will present several of its use cases.

If you happen to be attending the VLDB conference and you’re interested in learning more about how to build a replicated log using Kafka, how to deploy it as your commit log replication layer underlying your distributed stores, etc., I invite you to attend my session or find me at the conference.

Building a Replicated Logging System with Apache Kafka
Guozhang Wang, Confluent
10:30am – 12:00pm, Thursday, September 3, 2015
41st International Conference on Very Large Data Bases
Hilton Waikoloa Hotel | Kohala Coast, Hawai’i | August 31 – September 4, 2015

You may also be interested in these blog posts by Jay Kreps (original Kafka co-creator):

Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform (Part 1)

Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform (Part 2)

Feel free to share your feedback, questions, and suggestions — about my conference talk or about Kafka in general — with us at any time via https://www.confluent.io/contact or @ConfluentInc on Twitter.

  • Guozhang Wang is a PMC member of Apache Kafka, and also a tech lead at Confluent leading the Kafka Streams team. He received his Ph.D. from Cornell University where he worked on scaling data-driven applications. Prior to Confluent, Guozhang was a senior software engineer at LinkedIn, developing and maintaining its backbone streaming infrastructure on Apache Kafka and Apache Samza.

Avez-vous aimé cet article de blog ? Partagez-le !